Historical Analysis
Tools and methods for analyzing temporal changes in LiDAR datasets and detecting urban evolution patterns.
Overviewβ
Historical analysis capabilities enable researchers to track changes in urban environments over time using multi-temporal LiDAR datasets. These tools support urban planning, environmental monitoring, and heritage preservation applications.
Temporal Analysis Classesβ
ChangeDetectorβ
Core class for detecting changes between LiDAR datasets from different time periods.
from ign_lidar.temporal import ChangeDetector
detector = ChangeDetector(
resolution=1.0, # Analysis grid resolution in meters
height_threshold=0.5, # Minimum height change to detect
confidence_threshold=0.8
)
# Detect changes between two datasets
changes = detector.detect_changes(
dataset_t1="lidar_2020.las",
dataset_t2="lidar_2024.las",
change_types=["construction", "demolition", "vegetation"]
)
Change Detection Methodsβ
Building Change Detectionβ
# Detect new constructions and demolitions
building_changes = detector.detect_building_changes(
buildings_t1=buildings_2020,
buildings_t2=buildings_2024,
match_threshold=0.7 # Geometric similarity threshold
)
# Results structure
{
'new_buildings': List[Building], # Newly constructed
'demolished_buildings': List[Building], # Demolished structures
'modified_buildings': List[Tuple[Building, Building]], # Changed buildings
'stable_buildings': List[Building], # Unchanged buildings
'change_statistics': Dict # Summary statistics
}
Vegetation Change Analysisβ
# Analyze vegetation changes
vegetation_changes = detector.analyze_vegetation_changes(
points_t1=points_2020,
points_t2=points_2024,
vegetation_threshold=2.0, # Minimum vegetation height
growth_threshold=1.5 # Significant growth threshold
)
# Returns
{
'deforestation_areas': List[Polygon], # Areas of tree removal
'afforestation_areas': List[Polygon], # New vegetation areas
'growth_areas': List[Polygon], # Significant vegetation growth
'canopy_changes': Dict, # Canopy cover statistics
'biomass_changes': Dict # Estimated biomass changes
}
Urban Densification Analysisβ
# Analyze urban development patterns
densification = detector.analyze_urban_densification(
datasets=[lidar_2015, lidar_2020, lidar_2024],
analysis_zones=city_districts,
indicators=["building_density", "height_growth", "footprint_ratio"]
)
# Per-zone analysis results
for zone, analysis in densification.items():
print(f"Zone {zone}:")
print(f" Building density change: {analysis['density_change']:.2f}%")
print(f" Average height increase: {analysis['height_increase']:.1f}m")
print(f" New footprint area: {analysis['new_area']:.1f} mΒ²")
TemporalProcessorβ
Specialized processor for handling time-series LiDAR data.
from ign_lidar.temporal import TemporalProcessor
processor = TemporalProcessor(
temporal_resolution="annual", # "monthly", "annual", "custom"
alignment_method="icp", # Point cloud alignment method
normalization=True # Normalize elevation references
)
# Process temporal dataset
time_series = processor.process_time_series(
datasets=[
{"path": "lidar_2020.las", "date": "2020-06-15"},
{"path": "lidar_2021.las", "date": "2021-06-20"},
{"path": "lidar_2022.las", "date": "2022-06-18"},
{"path": "lidar_2023.las", "date": "2023-06-25"},
{"path": "lidar_2024.las", "date": "2024-06-22"}
]
)
Temporal Interpolationβ
# Interpolate missing temporal data
interpolated = processor.temporal_interpolation(
time_series=time_series,
target_dates=["2020-12-31", "2021-12-31"],
method="cubic_spline"
)
Trend Analysisβ
# Analyze temporal trends
trends = processor.analyze_trends(
time_series=time_series,
variables=["building_height", "vegetation_coverage", "ground_level"],
trend_methods=["linear", "polynomial", "seasonal"]
)
# Trend results
{
'building_height': {
'trend': 'increasing',
'rate': 0.3, # meters per year
'confidence': 0.95,
'seasonal_pattern': True
},
'vegetation_coverage': {
'trend': 'stable',
'seasonal_amplitude': 0.15,
'peak_month': 'June'
}
}
Heritage Monitoringβ
HeritageMonitorβ
Specialized tools for monitoring heritage buildings and historical sites.
from ign_lidar.heritage import HeritageMonitor
heritage_monitor = HeritageMonitor(
sensitivity="high", # Change detection sensitivity
preserve_details=True,
documentation_level="comprehensive"
)
# Monitor heritage site changes
heritage_analysis = heritage_monitor.analyze_heritage_changes(
baseline="heritage_site_2020.las",
current="heritage_site_2024.las",
heritage_boundaries=monument_polygons,
protected_features=["facades", "rooflines", "structural_elements"]
)
Structural Integrity Assessmentβ
# Assess structural changes in heritage buildings
integrity_assessment = heritage_monitor.assess_structural_integrity(
building_id="monument_001",
time_series=building_time_series,
critical_zones=["load_bearing_walls", "roof_structure"],
tolerance_levels={
"settlement": 0.02, # 2cm maximum settlement
"deformation": 0.01, # 1cm maximum deformation
"crack_width": 0.005 # 5mm maximum crack width
}
)
# Alert system for critical changes
if integrity_assessment.has_critical_changes():
alerts = integrity_assessment.get_critical_alerts()
for alert in alerts:
print(f"π¨ CRITICAL: {alert.description}")
print(f" Location: {alert.coordinates}")
print(f" Severity: {alert.severity_level}")
Documentation Generationβ
# Generate heritage monitoring reports
report = heritage_monitor.generate_monitoring_report(
site_id="historical_district_001",
analysis_results=heritage_analysis,
report_type="conservation",
include_3d_models=True,
include_recommendations=True
)
# Export report in multiple formats
report.save("heritage_report.pdf")
report.save("heritage_report.html")
report.export_3d_models("models/")
Urban Evolution Analysisβ
UrbanEvolutionAnalyzerβ
Comprehensive analysis of urban development patterns over time.
from ign_lidar.urban_evolution import UrbanEvolutionAnalyzer
evolution_analyzer = UrbanEvolutionAnalyzer(
analysis_scale="neighborhood", # "full", "block", "neighborhood", "city"
temporal_window="5_years",
evolution_indicators=["density", "height", "morphology", "green_space"]
)
# Analyze urban evolution patterns
evolution_patterns = evolution_analyzer.analyze_evolution_patterns(
city_datasets=temporal_datasets,
urban_zones=planning_zones,
reference_year=2020
)
Development Pattern Recognitionβ
# Identify development patterns
development_patterns = evolution_analyzer.identify_development_patterns(
evolution_data=evolution_patterns,
pattern_types=[
"sprawl", # Urban sprawl expansion
"densification", # Urban densification
"regeneration", # Urban regeneration
"gentrification", # Neighborhood gentrification
"green_development" # Green space integration
]
)
# Pattern classification results
for pattern in development_patterns:
print(f"Pattern: {pattern.type}")
print(f"Area: {pattern.area_km2:.2f} kmΒ²")
print(f"Intensity: {pattern.intensity_score:.2f}")
print(f"Timeframe: {pattern.start_date} to {pattern.end_date}")
print(f"Confidence: {pattern.confidence:.2f}")
Sustainability Metricsβ
# Calculate urban sustainability indicators
sustainability_metrics = evolution_analyzer.calculate_sustainability_metrics(
evolution_data=evolution_patterns,
metrics=[
"green_space_ratio",
"building_energy_efficiency",
"urban_heat_island",
"walkability_index",
"density_optimization"
]
)
# Generate sustainability dashboard
dashboard = evolution_analyzer.create_sustainability_dashboard(
metrics=sustainability_metrics,
target_values=sustainability_targets,
visualization_style="interactive"
)
Climate Impact Analysisβ
ClimateChangeAnalyzerβ
Analyze the impact of climate change on urban infrastructure using temporal LiDAR data.
from ign_lidar.climate import ClimateChangeAnalyzer
climate_analyzer = ClimateChangeAnalyzer(
climate_variables=["temperature", "precipitation", "wind"],
impact_indicators=["flooding", "erosion", "vegetation_stress"]
)
# Analyze climate impacts
climate_impacts = climate_analyzer.analyze_climate_impacts(
lidar_time_series=temporal_datasets,
climate_data=weather_station_data,
vulnerability_maps=flood_risk_maps
)
Flood Impact Assessmentβ
# Assess flood impacts on urban areas
flood_assessment = climate_analyzer.assess_flood_impacts(
pre_flood="lidar_before_flood.las",
post_flood="lidar_after_flood.las",
flood_extent=flood_boundary,
infrastructure_layers=["roads", "buildings", "utilities"]
)
# Damage quantification
damage_report = {
'affected_buildings': flood_assessment.building_damage_count,
'road_damage_km': flood_assessment.road_damage_length,
'estimated_cost': flood_assessment.estimated_repair_cost,
'recovery_time_estimate': flood_assessment.recovery_timeframe
}
Visualization and Reportingβ
TemporalVisualizerβ
Create visualizations for temporal analysis results.
from ign_lidar.visualization import TemporalVisualizer
visualizer = TemporalVisualizer(
style="scientific",
color_scheme="temporal",
animation_quality="high"
)
# Create temporal change animation
animation = visualizer.create_temporal_animation(
time_series_data=time_series,
change_overlay=change_detection_results,
animation_type="morphing", # "morphing", "overlay", "side_by_side"
frame_rate=2, # frames per second
duration=10 # seconds
)
animation.save("urban_evolution.mp4")
Interactive Dashboardsβ
# Create interactive temporal analysis dashboard
dashboard = visualizer.create_temporal_dashboard(
datasets=temporal_datasets,
analysis_results=[changes, trends, patterns],
dashboard_components=[
"timeline_slider",
"change_heatmap",
"statistics_panel",
"3d_viewer",
"export_tools"
]
)
# Deploy dashboard
dashboard.deploy(
host="localhost",
port=8080,
title="Urban Evolution Analysis Dashboard"
)
Report Generationβ
from ign_lidar.reporting import TemporalReport
# Generate comprehensive temporal analysis report
report = TemporalReport(
title="Urban Development Analysis 2020-2024",
authors=["Urban Planning Department"],
analysis_data={
'change_detection': change_results,
'trend_analysis': trend_results,
'heritage_monitoring': heritage_results,
'sustainability_metrics': sustainability_data
}
)
# Configure report sections
report.add_executive_summary()
report.add_methodology_section()
report.add_results_section(include_visualizations=True)
report.add_recommendations_section()
report.add_appendices(include_raw_data=False)
# Export in multiple formats
report.export_pdf("temporal_analysis_report.pdf")
report.export_html("temporal_analysis_report.html")
report.export_data("temporal_analysis_data.json")
Advanced Applicationsβ
Predictive Modelingβ
from ign_lidar.prediction import UrbanPredictionModel
# Train predictive model on historical data
prediction_model = UrbanPredictionModel(
model_type="neural_network", # "linear", "random_forest", "neural_network"
features=["density_trend", "height_growth", "land_use_changes"],
prediction_horizon="5_years"
)
prediction_model.train(
training_data=historical_evolution_data,
validation_split=0.2
)
# Generate future development predictions
predictions = prediction_model.predict_development(
current_state=current_urban_state,
scenario_parameters={
'population_growth': 0.02, # 2% annual growth
'economic_growth': 0.03, # 3% annual growth
'planning_constraints': planning_regulations
}
)
# Prediction results
{
'predicted_building_density': 1250, # buildings/kmΒ²
'predicted_average_height': 18.5, # meters
'confidence_interval': (16.2, 20.8), # 95% confidence
'uncertainty_factors': ['economic_volatility', 'policy_changes']
}
Multi-Scale Analysisβ
from ign_lidar.multiscale import MultiScaleTemporalAnalyzer
# Perform analysis at multiple spatial scales
multiscale_analyzer = MultiScaleTemporalAnalyzer(
scales=["full", "block", "neighborhood", "city"],
scale_interactions=True
)
multiscale_results = multiscale_analyzer.analyze_multiscale_changes(
temporal_data=time_series_data,
spatial_hierarchies=administrative_boundaries
)
# Cross-scale interaction analysis
interactions = multiscale_analyzer.analyze_scale_interactions(
multiscale_results=multiscale_results,
interaction_types=["top_down", "bottom_up", "lateral"]
)
Integration and Workflowsβ
Automated Monitoring Systemsβ
from ign_lidar.monitoring import AutomatedMonitoringSystem
# Set up automated temporal monitoring
monitoring_system = AutomatedMonitoringSystem(
data_sources=["ign_api", "local_storage"],
monitoring_frequency="monthly",
alert_thresholds={
'rapid_construction': 100, # buildings per month
'significant_demolition': 50, # buildings per month
'vegetation_loss': 0.1 # 10% coverage loss
}
)
# Configure monitoring zones
monitoring_system.add_monitoring_zone(
zone_id="downtown_district",
geometry=downtown_boundary,
priority="high",
notification_recipients=["planning@city.gov"]
)
# Start automated monitoring
monitoring_system.start()
API Integrationβ
from ign_lidar.api import TemporalAnalysisAPI
# RESTful API for temporal analysis services
api = TemporalAnalysisAPI(
host="0.0.0.0",
port=5000,
authentication=True
)
# API endpoints for temporal analysis
@api.route("/analyze_changes", methods=["POST"])
def analyze_changes_endpoint():
"""Endpoint for change detection analysis."""
request_data = api.get_request_data()
# Perform analysis
results = detector.detect_changes(
dataset_t1=request_data["dataset_t1"],
dataset_t2=request_data["dataset_t2"],
parameters=request_data["parameters"]
)
return api.json_response(results)
# Start API server
api.run()
Best Practicesβ
Data Quality Assuranceβ
# Implement quality checks for temporal analysis
from ign_lidar.quality import TemporalQualityController
quality_controller = TemporalQualityController(
alignment_tolerance=0.1, # 10cm alignment tolerance
temporal_consistency=True, # Check temporal consistency
completeness_threshold=0.95 # 95% data completeness required
)
# Validate temporal dataset quality
quality_report = quality_controller.validate_temporal_dataset(
datasets=temporal_datasets,
reference_standards="ign_specifications"
)
if quality_report.has_issues():
print("β οΈ Quality issues detected:")
for issue in quality_report.issues:
print(f" - {issue.description}")
print(f" Severity: {issue.severity}")
print(f" Recommendation: {issue.recommendation}")
Performance Optimizationβ
# Optimize temporal analysis performance
from ign_lidar.optimization import TemporalOptimizer
optimizer = TemporalOptimizer(
caching_strategy="aggressive",
parallel_processing=True,
memory_management="adaptive"
)
# Apply optimizations
optimized_detector = optimizer.optimize_change_detector(
detector=detector,
expected_data_size="large", # "small", "medium", "large"
processing_time_limit=3600 # 1 hour maximum
)