Skip to main content

Historical Analysis

Tools and methods for analyzing temporal changes in LiDAR datasets and detecting urban evolution patterns.

Overview​

Historical analysis capabilities enable researchers to track changes in urban environments over time using multi-temporal LiDAR datasets. These tools support urban planning, environmental monitoring, and heritage preservation applications.

Temporal Analysis Classes​

ChangeDetector​

Core class for detecting changes between LiDAR datasets from different time periods.

from ign_lidar.temporal import ChangeDetector

detector = ChangeDetector(
resolution=1.0, # Analysis grid resolution in meters
height_threshold=0.5, # Minimum height change to detect
confidence_threshold=0.8
)

# Detect changes between two datasets
changes = detector.detect_changes(
dataset_t1="lidar_2020.las",
dataset_t2="lidar_2024.las",
change_types=["construction", "demolition", "vegetation"]
)

Change Detection Methods​

Building Change Detection​
# Detect new constructions and demolitions
building_changes = detector.detect_building_changes(
buildings_t1=buildings_2020,
buildings_t2=buildings_2024,
match_threshold=0.7 # Geometric similarity threshold
)

# Results structure
{
'new_buildings': List[Building], # Newly constructed
'demolished_buildings': List[Building], # Demolished structures
'modified_buildings': List[Tuple[Building, Building]], # Changed buildings
'stable_buildings': List[Building], # Unchanged buildings
'change_statistics': Dict # Summary statistics
}
Vegetation Change Analysis​
# Analyze vegetation changes
vegetation_changes = detector.analyze_vegetation_changes(
points_t1=points_2020,
points_t2=points_2024,
vegetation_threshold=2.0, # Minimum vegetation height
growth_threshold=1.5 # Significant growth threshold
)

# Returns
{
'deforestation_areas': List[Polygon], # Areas of tree removal
'afforestation_areas': List[Polygon], # New vegetation areas
'growth_areas': List[Polygon], # Significant vegetation growth
'canopy_changes': Dict, # Canopy cover statistics
'biomass_changes': Dict # Estimated biomass changes
}
Urban Densification Analysis​
# Analyze urban development patterns
densification = detector.analyze_urban_densification(
datasets=[lidar_2015, lidar_2020, lidar_2024],
analysis_zones=city_districts,
indicators=["building_density", "height_growth", "footprint_ratio"]
)

# Per-zone analysis results
for zone, analysis in densification.items():
print(f"Zone {zone}:")
print(f" Building density change: {analysis['density_change']:.2f}%")
print(f" Average height increase: {analysis['height_increase']:.1f}m")
print(f" New footprint area: {analysis['new_area']:.1f} mΒ²")

TemporalProcessor​

Specialized processor for handling time-series LiDAR data.

from ign_lidar.temporal import TemporalProcessor

processor = TemporalProcessor(
temporal_resolution="annual", # "monthly", "annual", "custom"
alignment_method="icp", # Point cloud alignment method
normalization=True # Normalize elevation references
)

# Process temporal dataset
time_series = processor.process_time_series(
datasets=[
{"path": "lidar_2020.las", "date": "2020-06-15"},
{"path": "lidar_2021.las", "date": "2021-06-20"},
{"path": "lidar_2022.las", "date": "2022-06-18"},
{"path": "lidar_2023.las", "date": "2023-06-25"},
{"path": "lidar_2024.las", "date": "2024-06-22"}
]
)

Temporal Interpolation​

# Interpolate missing temporal data
interpolated = processor.temporal_interpolation(
time_series=time_series,
target_dates=["2020-12-31", "2021-12-31"],
method="cubic_spline"
)

Trend Analysis​

# Analyze temporal trends
trends = processor.analyze_trends(
time_series=time_series,
variables=["building_height", "vegetation_coverage", "ground_level"],
trend_methods=["linear", "polynomial", "seasonal"]
)

# Trend results
{
'building_height': {
'trend': 'increasing',
'rate': 0.3, # meters per year
'confidence': 0.95,
'seasonal_pattern': True
},
'vegetation_coverage': {
'trend': 'stable',
'seasonal_amplitude': 0.15,
'peak_month': 'June'
}
}

Heritage Monitoring​

HeritageMonitor​

Specialized tools for monitoring heritage buildings and historical sites.

from ign_lidar.heritage import HeritageMonitor

heritage_monitor = HeritageMonitor(
sensitivity="high", # Change detection sensitivity
preserve_details=True,
documentation_level="comprehensive"
)

# Monitor heritage site changes
heritage_analysis = heritage_monitor.analyze_heritage_changes(
baseline="heritage_site_2020.las",
current="heritage_site_2024.las",
heritage_boundaries=monument_polygons,
protected_features=["facades", "rooflines", "structural_elements"]
)

Structural Integrity Assessment​

# Assess structural changes in heritage buildings
integrity_assessment = heritage_monitor.assess_structural_integrity(
building_id="monument_001",
time_series=building_time_series,
critical_zones=["load_bearing_walls", "roof_structure"],
tolerance_levels={
"settlement": 0.02, # 2cm maximum settlement
"deformation": 0.01, # 1cm maximum deformation
"crack_width": 0.005 # 5mm maximum crack width
}
)

# Alert system for critical changes
if integrity_assessment.has_critical_changes():
alerts = integrity_assessment.get_critical_alerts()
for alert in alerts:
print(f"🚨 CRITICAL: {alert.description}")
print(f" Location: {alert.coordinates}")
print(f" Severity: {alert.severity_level}")

Documentation Generation​

# Generate heritage monitoring reports
report = heritage_monitor.generate_monitoring_report(
site_id="historical_district_001",
analysis_results=heritage_analysis,
report_type="conservation",
include_3d_models=True,
include_recommendations=True
)

# Export report in multiple formats
report.save("heritage_report.pdf")
report.save("heritage_report.html")
report.export_3d_models("models/")

Urban Evolution Analysis​

UrbanEvolutionAnalyzer​

Comprehensive analysis of urban development patterns over time.

from ign_lidar.urban_evolution import UrbanEvolutionAnalyzer

evolution_analyzer = UrbanEvolutionAnalyzer(
analysis_scale="neighborhood", # "full", "block", "neighborhood", "city"
temporal_window="5_years",
evolution_indicators=["density", "height", "morphology", "green_space"]
)

# Analyze urban evolution patterns
evolution_patterns = evolution_analyzer.analyze_evolution_patterns(
city_datasets=temporal_datasets,
urban_zones=planning_zones,
reference_year=2020
)

Development Pattern Recognition​

# Identify development patterns
development_patterns = evolution_analyzer.identify_development_patterns(
evolution_data=evolution_patterns,
pattern_types=[
"sprawl", # Urban sprawl expansion
"densification", # Urban densification
"regeneration", # Urban regeneration
"gentrification", # Neighborhood gentrification
"green_development" # Green space integration
]
)

# Pattern classification results
for pattern in development_patterns:
print(f"Pattern: {pattern.type}")
print(f"Area: {pattern.area_km2:.2f} kmΒ²")
print(f"Intensity: {pattern.intensity_score:.2f}")
print(f"Timeframe: {pattern.start_date} to {pattern.end_date}")
print(f"Confidence: {pattern.confidence:.2f}")

Sustainability Metrics​

# Calculate urban sustainability indicators
sustainability_metrics = evolution_analyzer.calculate_sustainability_metrics(
evolution_data=evolution_patterns,
metrics=[
"green_space_ratio",
"building_energy_efficiency",
"urban_heat_island",
"walkability_index",
"density_optimization"
]
)

# Generate sustainability dashboard
dashboard = evolution_analyzer.create_sustainability_dashboard(
metrics=sustainability_metrics,
target_values=sustainability_targets,
visualization_style="interactive"
)

Climate Impact Analysis​

ClimateChangeAnalyzer​

Analyze the impact of climate change on urban infrastructure using temporal LiDAR data.

from ign_lidar.climate import ClimateChangeAnalyzer

climate_analyzer = ClimateChangeAnalyzer(
climate_variables=["temperature", "precipitation", "wind"],
impact_indicators=["flooding", "erosion", "vegetation_stress"]
)

# Analyze climate impacts
climate_impacts = climate_analyzer.analyze_climate_impacts(
lidar_time_series=temporal_datasets,
climate_data=weather_station_data,
vulnerability_maps=flood_risk_maps
)

Flood Impact Assessment​

# Assess flood impacts on urban areas
flood_assessment = climate_analyzer.assess_flood_impacts(
pre_flood="lidar_before_flood.las",
post_flood="lidar_after_flood.las",
flood_extent=flood_boundary,
infrastructure_layers=["roads", "buildings", "utilities"]
)

# Damage quantification
damage_report = {
'affected_buildings': flood_assessment.building_damage_count,
'road_damage_km': flood_assessment.road_damage_length,
'estimated_cost': flood_assessment.estimated_repair_cost,
'recovery_time_estimate': flood_assessment.recovery_timeframe
}

Visualization and Reporting​

TemporalVisualizer​

Create visualizations for temporal analysis results.

from ign_lidar.visualization import TemporalVisualizer

visualizer = TemporalVisualizer(
style="scientific",
color_scheme="temporal",
animation_quality="high"
)

# Create temporal change animation
animation = visualizer.create_temporal_animation(
time_series_data=time_series,
change_overlay=change_detection_results,
animation_type="morphing", # "morphing", "overlay", "side_by_side"
frame_rate=2, # frames per second
duration=10 # seconds
)

animation.save("urban_evolution.mp4")

Interactive Dashboards​

# Create interactive temporal analysis dashboard
dashboard = visualizer.create_temporal_dashboard(
datasets=temporal_datasets,
analysis_results=[changes, trends, patterns],
dashboard_components=[
"timeline_slider",
"change_heatmap",
"statistics_panel",
"3d_viewer",
"export_tools"
]
)

# Deploy dashboard
dashboard.deploy(
host="localhost",
port=8080,
title="Urban Evolution Analysis Dashboard"
)

Report Generation​

from ign_lidar.reporting import TemporalReport

# Generate comprehensive temporal analysis report
report = TemporalReport(
title="Urban Development Analysis 2020-2024",
authors=["Urban Planning Department"],
analysis_data={
'change_detection': change_results,
'trend_analysis': trend_results,
'heritage_monitoring': heritage_results,
'sustainability_metrics': sustainability_data
}
)

# Configure report sections
report.add_executive_summary()
report.add_methodology_section()
report.add_results_section(include_visualizations=True)
report.add_recommendations_section()
report.add_appendices(include_raw_data=False)

# Export in multiple formats
report.export_pdf("temporal_analysis_report.pdf")
report.export_html("temporal_analysis_report.html")
report.export_data("temporal_analysis_data.json")

Advanced Applications​

Predictive Modeling​

from ign_lidar.prediction import UrbanPredictionModel

# Train predictive model on historical data
prediction_model = UrbanPredictionModel(
model_type="neural_network", # "linear", "random_forest", "neural_network"
features=["density_trend", "height_growth", "land_use_changes"],
prediction_horizon="5_years"
)

prediction_model.train(
training_data=historical_evolution_data,
validation_split=0.2
)

# Generate future development predictions
predictions = prediction_model.predict_development(
current_state=current_urban_state,
scenario_parameters={
'population_growth': 0.02, # 2% annual growth
'economic_growth': 0.03, # 3% annual growth
'planning_constraints': planning_regulations
}
)

# Prediction results
{
'predicted_building_density': 1250, # buildings/kmΒ²
'predicted_average_height': 18.5, # meters
'confidence_interval': (16.2, 20.8), # 95% confidence
'uncertainty_factors': ['economic_volatility', 'policy_changes']
}

Multi-Scale Analysis​

from ign_lidar.multiscale import MultiScaleTemporalAnalyzer

# Perform analysis at multiple spatial scales
multiscale_analyzer = MultiScaleTemporalAnalyzer(
scales=["full", "block", "neighborhood", "city"],
scale_interactions=True
)

multiscale_results = multiscale_analyzer.analyze_multiscale_changes(
temporal_data=time_series_data,
spatial_hierarchies=administrative_boundaries
)

# Cross-scale interaction analysis
interactions = multiscale_analyzer.analyze_scale_interactions(
multiscale_results=multiscale_results,
interaction_types=["top_down", "bottom_up", "lateral"]
)

Integration and Workflows​

Automated Monitoring Systems​

from ign_lidar.monitoring import AutomatedMonitoringSystem

# Set up automated temporal monitoring
monitoring_system = AutomatedMonitoringSystem(
data_sources=["ign_api", "local_storage"],
monitoring_frequency="monthly",
alert_thresholds={
'rapid_construction': 100, # buildings per month
'significant_demolition': 50, # buildings per month
'vegetation_loss': 0.1 # 10% coverage loss
}
)

# Configure monitoring zones
monitoring_system.add_monitoring_zone(
zone_id="downtown_district",
geometry=downtown_boundary,
priority="high",
notification_recipients=["planning@city.gov"]
)

# Start automated monitoring
monitoring_system.start()

API Integration​

from ign_lidar.api import TemporalAnalysisAPI

# RESTful API for temporal analysis services
api = TemporalAnalysisAPI(
host="0.0.0.0",
port=5000,
authentication=True
)

# API endpoints for temporal analysis
@api.route("/analyze_changes", methods=["POST"])
def analyze_changes_endpoint():
"""Endpoint for change detection analysis."""
request_data = api.get_request_data()

# Perform analysis
results = detector.detect_changes(
dataset_t1=request_data["dataset_t1"],
dataset_t2=request_data["dataset_t2"],
parameters=request_data["parameters"]
)

return api.json_response(results)

# Start API server
api.run()

Best Practices​

Data Quality Assurance​

# Implement quality checks for temporal analysis
from ign_lidar.quality import TemporalQualityController

quality_controller = TemporalQualityController(
alignment_tolerance=0.1, # 10cm alignment tolerance
temporal_consistency=True, # Check temporal consistency
completeness_threshold=0.95 # 95% data completeness required
)

# Validate temporal dataset quality
quality_report = quality_controller.validate_temporal_dataset(
datasets=temporal_datasets,
reference_standards="ign_specifications"
)

if quality_report.has_issues():
print("⚠️ Quality issues detected:")
for issue in quality_report.issues:
print(f" - {issue.description}")
print(f" Severity: {issue.severity}")
print(f" Recommendation: {issue.recommendation}")

Performance Optimization​

# Optimize temporal analysis performance
from ign_lidar.optimization import TemporalOptimizer

optimizer = TemporalOptimizer(
caching_strategy="aggressive",
parallel_processing=True,
memory_management="adaptive"
)

# Apply optimizations
optimized_detector = optimizer.optimize_change_detector(
detector=detector,
expected_data_size="large", # "small", "medium", "large"
processing_time_limit=3600 # 1 hour maximum
)