Release Notes - Version 1.7.2
Release Date: October 4, 2025
Type: Feature Release
Overviewβ
Version 1.7.2 introduces Near-Infrared (NIR) augmentation capability, enabling vegetation analysis, NDVI calculation, and enhanced multi-modal machine learning datasets.
πΏ What's Newβ
Infrared Augmentationβ
Add Near-Infrared values from IGN IRC orthophotos to your LiDAR point clouds:
- NIR Integration: Fetch and integrate infrared data from IGN GΓ©oplateforme WMS service
- NDVI Ready: Calculate vegetation indices (NDVI, EVI, GNDVI, SAVI) directly from enriched tiles
- Multi-Modal Datasets: Combine Geometry + RGB + NIR for superior machine learning models
- Smart Caching: Efficient disk and GPU caching system (shared with RGB augmentation)
- Seamless Integration: Works alongside RGB augmentation in the enrich pipeline
CLI Integrationβ
# Enrich with infrared
ign-lidar-hd enrich --input tiles/ --output enriched/ --add-infrared
# Combined RGB + Infrared (recommended)
ign-lidar-hd enrich --input tiles/ --output enriched/ \
--add-rgb --add-infrared \
--rgb-cache-dir cache/rgb \
--infrared-cache-dir cache/infrared
# Full-featured processing
ign-lidar-hd enrich --input tiles/ --output enriched/ \
--mode full --auto-params --preprocess \
--add-rgb --add-infrared \
--use-gpu
Pipeline Configuration (YAML)β
enrich:
mode: full
add_rgb: true
rgb_cache_dir: "cache/rgb"
# New: Infrared augmentation
add_infrared: true
infrared_cache_dir: "cache/infrared"
Python APIβ
from ign_lidar.infrared_augmentation import IGNInfraredFetcher
import numpy as np
# Initialize fetcher
fetcher = IGNInfraredFetcher(cache_dir="cache/infrared/")
# Augment points with NIR values
nir_values = fetcher.augment_points_with_infrared(points)
# Calculate NDVI
ndvi = (nir - red) / (nir + red + 1e-8)
Output Formatβ
- Extra Dimension: NIR values stored as 'nir' extra dimension (uint8, 0-255)
- LAZ 1.4 Compatibility: Standard LAZ format with extra dimensions
- CloudCompare Support: View NIR values as scalar fields
Bug Fixesβ
- Fixed metadata copying for single-file input (issue with relative path calculation)
- Enhanced COPC format handling and conversion
- Improved error handling for WMS service requests
Documentation Updatesβ
- Added comprehensive Infrared Augmentation Guide
- NDVI calculation examples and use cases
- CloudCompare visualization guide for NIR field
- Updated all example configurations with infrared settings
- Enhanced French and English documentation
Breaking Changesβ
None
Installationβ
Update to the latest version using:
pip install --upgrade ign-lidar-hd==1.7.2
Compatibilityβ
- Python 3.8+
- All existing APIs remain compatible
Contributorsβ
- Simon Ducournau
For complete documentation, visit our documentation site.