CLI Enrich Command Reference
The ign-lidar enrich
command adds building component features to LiDAR point clouds, enhancing them with geometric and architectural information.
Syntaxβ
ign-lidar enrich [OPTIONS] INPUT_PATH OUTPUT_PATH
Basic Usageβ
Enrich a Single Fileβ
ign-lidar enrich input.las enriched_output.las
Enrich with RGB Dataβ
ign-lidar enrich --rgb-path orthophoto.tif input.las output.las
Batch Processingβ
ign-lidar enrich --batch tiles/*.las --output-dir enriched/
Command Optionsβ
Input/Output Optionsβ
INPUT_PATH
(required)β
Path to input LAS/LAZ file or directory for batch processing.
# Single file
ign-lidar enrich tile_001.las output.las
# Directory (batch mode)
ign-lidar enrich tiles/ --output-dir enriched/
OUTPUT_PATH
(required for single files)β
Output path for enriched point cloud.
--output-dir, -o
(batch mode)β
Output directory for batch processing.
ign-lidar enrich tiles/ --output-dir /path/to/enriched/
--output-format
β
Output file format.
Options: las
, laz
, ply
, h5
Default: las
ign-lidar enrich input.las output.h5 --output-format h5
Processing Optionsβ
--features, -f
β
Specify which features to extract.
Options:
geometric
: Basic geometric features (planarity, linearity, etc.)architectural
: Building-specific features (walls, roofs, etc.)all
: All available featurescustom
: User-defined feature set
# Extract only geometric features
ign-lidar enrich --features geometric input.las output.las
# Extract all features
ign-lidar enrich --features all input.las output.las
# Custom feature set
ign-lidar enrich --features planarity,height,normal_z input.las output.las
--neighborhood-size, -n
β
Neighborhood radius for feature computation (meters).
Default: 1.0
ign-lidar enrich --neighborhood-size 2.0 input.las output.las
--min-building-points
β
Minimum points required to classify as building.
Default: 50
ign-lidar enrich --min-building-points 100 input.las output.las
RGB Integration Optionsβ
--rgb-path, -r
β
Path to orthophoto for color augmentation.
ign-lidar enrich --rgb-path orthophoto.tif input.las output.las
--rgb-interpolation
β
Interpolation method for RGB assignment.
Options: nearest
, bilinear
, bicubic
Default: bilinear
ign-lidar enrich --rgb-path ortho.tif --rgb-interpolation bicubic input.las output.las
--rgb-bands
β
Specify which bands to extract from orthophoto.
Default: 1,2,3
(RGB)
# Include infrared band
ign-lidar enrich --rgb-path ortho.tif --rgb-bands 1,2,3,4 input.las output.las
Performance Optionsβ
--gpu, -g
β
Enable GPU acceleration.
ign-lidar enrich --gpu input.las output.las
--gpu-memory-fraction
β
Fraction of GPU memory to use.
Default: 0.7
ign-lidar enrich --gpu --gpu-memory-fraction 0.9 input.las output.las
--batch-size, -b
β
Processing batch size for memory management.
Default: 100000
ign-lidar enrich --batch-size 50000 input.las output.las
--num-workers, -w
β
Number of parallel workers for processing.
Default: Number of CPU cores
ign-lidar enrich --num-workers 8 input.las output.las
Quality Control Optionsβ
--validate
β
Perform validation checks on output.
ign-lidar enrich --validate input.las output.las
--quality-report
β
Generate quality assessment report.
ign-lidar enrich --quality-report report.json input.las output.las
--preserve-classification
β
Keep original point classifications.
ign-lidar enrich --preserve-classification input.las output.las
Architectural Analysis Optionsβ
--architectural-style
β
Specify architectural style for enhanced analysis.
Options: haussmanian
, traditional
, contemporary
, industrial
ign-lidar enrich --architectural-style haussmanian input.las output.las
--region
β
Geographic region for style adaptation.
Options: ile_de_france
, provence
, brittany
, alsace
ign-lidar enrich --region ile_de_france input.las output.las
--building-type
β
Expected building types in dataset.
Options: residential
, commercial
, industrial
, mixed
ign-lidar enrich --building-type residential input.las output.las
Configuration Fileβ
Use a YAML configuration file for complex processing scenarios.
Configuration Exampleβ
# enrich_config.yaml
processing:
features: ["geometric", "architectural"]
neighborhood_size: 1.5
min_building_points: 75
rgb:
enabled: true
interpolation: "bilinear"
bands: [1, 2, 3]
performance:
use_gpu: true
gpu_memory_fraction: 0.8
batch_size: 75000
num_workers: 6
architectural:
style: "haussmanian"
region: "ile_de_france"
building_type: "residential"
quality:
validate: true
generate_report: true
Using Configuration Fileβ
ign-lidar enrich --config enrich_config.yaml input.las output.las
Advanced Examplesβ
High-Quality Building Analysisβ
ign-lidar enrich \
--features all \
--rgb-path orthophoto.tif \
--architectural-style haussmanian \
--region ile_de_france \
--neighborhood-size 1.5 \
--gpu \
--validate \
--quality-report quality.json \
input.las output.las
Batch Processing with GPUβ
ign-lidar enrich \
--batch tiles/*.las \
--output-dir enriched/ \
--features geometric,architectural \
--gpu \
--batch-size 200000 \
--num-workers 4
Memory-Optimized Processingβ
ign-lidar enrich \
--batch-size 25000 \
--gpu-memory-fraction 0.5 \
--num-workers 2 \
input_large.las output.las
Output Informationβ
Added Point Fieldsβ
The enrich command adds the following fields to point clouds:
Field Name | Type | Description |
---|---|---|
planarity | float | Surface planarity (0-1) |
linearity | float | Linear structure strength (0-1) |
sphericity | float | 3D compactness (0-1) |
height_above_ground | float | Normalized height (meters) |
building_component | uint8 | Component class (0=ground, 1=wall, 2=roof) |
architectural_style | uint8 | Detected architectural style |
normal_x , normal_y , normal_z | float | Surface normal vectors |
RGB Fields (when enabled)β
Field Name | Type | Description |
---|---|---|
red , green , blue | uint16 | RGB color values |
infrared | uint16 | Near-infrared (if available) |
material_class | uint8 | Material classification |
Error Handlingβ
Common Error Messagesβ
"GPU memory insufficient"β
Solution: Reduce batch size or GPU memory fraction
ign-lidar enrich --gpu-memory-fraction 0.5 --batch-size 50000 input.las output.las
"RGB file not found"β
Solution: Check orthophoto path and file permissions
ls -la /path/to/orthophoto.tif
"Insufficient points for feature extraction"β
Solution: Lower minimum building points threshold
ign-lidar enrich --min-building-points 25 input.las output.las
Debugging Optionsβ
--verbose, -v
β
Enable detailed logging output.
ign-lidar enrich --verbose input.las output.las
--debug
β
Enable debug mode with extensive logging.
ign-lidar enrich --debug input.las output.las
--log-file
β
Save logs to file.
ign-lidar enrich --log-file enrich.log input.las output.las
Performance Benchmarksβ
Processing Times (approximate)β
Points | Features | GPU | CPU | Speedup |
---|---|---|---|---|
1M | Geometric | 30s | 4min | 8x |
1M | All + RGB | 45s | 8min | 11x |
10M | Geometric | 3min | 35min | 12x |
10M | All + RGB | 5min | 75min | 15x |
Memory Usageβ
- CPU Mode: ~6GB RAM per 10M points
- GPU Mode: ~3GB GPU + 2GB RAM per 10M points
- Batch Processing: Configurable memory footprint
Related Commandsβ
ign-lidar download
- Download IGN LiDAR tilesign-lidar patch
- Extract ML training patchesign-lidar qgis
- QGIS integration tools